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ABSTRACT

This paper describes an implementation of Streams for the Plan 9 kernel, a multi-
threaded, multiprocessor kernel with a system call interface reminiscent of UNIX. Rather
than port Dennis Ritchie’s Streams to Plan 9, we changed the abstraction to fit more natu-
rally into the new environment. The result is a mechanism that has similar performance
and is internally easier to program.

1. Introduction

Plan 9 is a new computing environment being built and used by the Computing Science Research
Center at AT&T Bell Laboratories. Plan 9 consists of terminals, CPU servers and file servers connected by
various networks. These components run specialized operating systems based on a common multi-threaded
kernel. The kernel runs on both uniprocessors and shared memory multiprocessors.

Plan 9 communicates via a number of different networks. Therefore we decided to base all our net-
work code on a single structure. This allowed us to solve at once a number of problems such as flow con-
trol, memory allocation, and user interface. Given our past experience with it, we chose Dennis Ritchie’s
Stream I/O System [Rit84] to provide the structure for Plan 9. This coroutine-based design, introduced in
the Eighth Edition, provides a clean, flexible mechanism for handling asynchronous I/O. Although Plan 9’s
kernel is unrelated to that of the Eighth Edition [McI85], the concept of Streams remained directly applica-
ble. We have, however, made two major alterations.

Plan 9 runs on multiprocessor systems so we wanted to exploit their concurrency. In the Plan 9 ker-
nel, the basic unit of concurrency is the process. We therefore converted Ritchie’s coroutine-based design
to a process-based one. As we shall see later, this change has both advantages and disadvantages.

Associated with the change to a process-based structure, we also had to reduce the number of threads.
If we had made the most obvious change to convert each of Ritchie’s coroutines into a process, we would
have incurred very high CPU penalties. No matter how cheap we make our kernel processes they would
never be as cheap as coroutines. Instead, we chose a structure that performs in one process what Streams
does in many coroutines.

The result is a structure very similar to Streams but, we believe, easier to program. The interfaces,
flow control, and memory allocation are the same. However, the freedom to allow processing modules to
block and to use any resources available to a user process has made many pieces much easier to program.
A process is a familiar programming construct.

In the rest of this paper we will refer to Ritchie’s Streams simply as Streams and to Plan 9 Streams as
Plan 9.
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2. Data Structures

Plan 9, aside from minor changes, uses the same data structures as Streams. Our description here is
very brief and is intended to highlight the differences. We refer the reader to Dennis’s excellent BLTJ
paper [Rit84] for a more comprehensive treatment.

The appendix contains the C definitions of our data structures.

2.1. Stream

A Stream is a full duplex channel connecting a device or pseudo-device to a user process. User
processes insert and remove data at one end of the stream. Kernel processes acting on behalf of a device
insert data at the other.

A stream is made up of a linear list of processing modules. Each module has both an upstream
(toward the user) and a downstream (toward the device) put procedure. Data is inserted into a stream by
calling the put procedure of the module at either end of the stream. Each module calls the succeeding one
to send data up or down the stream.

2.2. Queue

An instance of a processing module is described by a pair of Queues, one for each direction. Each
queue contains:

- a pointer to the put procedure

- a pointer to the next queue

- a linked list of queued data blocks

- the number of bytes queued

- the number of blocks queued

- a spin lock to control access to the data structure

Unlike a Stream queue ours has no service procedure. Also, since on a multiprocessor setting prior-
ity levels is not a valid synchronization mechanism, we require a spin lock from the operating system to
control access to the queue.

2.3. Block

The objects passed through the stream are described by a data structure called a Block. Our blocks
are identical to Streams and contain a base pointer, a limit pointer, a read pointer, and a write pointer.
Each pointer refers to memory mapped into kernel space. The base and limit are never changed and are
used to describe the data allocated to the block. The read and write pointers point to the start and end of
usable data within the block.

There are two block types, data and control. Data blocks are used to pass information from process
to process. Control blocks are used to control the action of the modules. They both have the same format.
Data blocks are often queued in a processing module until some condition is met for passing them along or
freeing them. Control blocks are never queued but are passed from module to module until one accepts and
frees them.

Streams also have data and control blocks. However, their control blocks come in multiple flavors,
all queuable; some with the same priority as data and some higher. Higher priority blocks are moved to the
front of the queue. At a result, the routines used to manipulate these control blocks tend to be complex.

When a module’s put is called it is passed a pointer to a block. If one desires to pass many blocks
atomically, the blocks may be chained together and a pointer to the first is passed to the procedure. This is
similar to the way mbufs are passed in the BSD kernel [Lef89]. Streams need no such concept since no two
threads run simultaneously in a Streams procedure. UNIX System V STREAMS [Bac86] have a much
more complicated construct to pass a multi-block message along with a single put. The System V construct
is used both for atomicity (they originally had no other block delimiters) and for performance.
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3. Algorithms

3.1. Memory Allocation

Stream memory is allocated at system start time. A list is kept for each of several fixed block sizes.
A process that requests a size receives the smallest block that can hold the request. Synchronizing access of
the free lists is performed using a spin lock per free list.

Since all stream code runs in the context of processes, whenever an allocation cannot be immediately
processed the caller blocks until a block of the right size is freed. The result is that momentary surges in
used blocks do not panic the kernel as they sometimes did in the Eight Edition.

The number of lists, the specific block sizes and the number allocated of each size depends on the
kernel. Terminals tend to use more small blocks, the servers more large ones. The allocated blocks reflect
this.

3.2. User Interface

A stream is represented at user level as a directory containing at least two files, ctl and data. The
first process to open either file creates the stream automatically. The last process to close destroys the
stream. Writing to the data file causes a switch to kernel mode. The process then copies the data into
kernel data blocks and calls the put procedure of the first downstream processing module for each block.
The last block of a write is flagged with a delimiter in the event that the downstream module cares about
write boundaries. In most cases the first put procedure calls the second, the second calls the third, and so
on until the data is output. Thus, data may often be sent without taking a context switch. A write lock at
the top of the stream assures that no two processes can simultaneously insert data into the top of the same
stream, which insures that all writes are atomic.

Our system has no ioctl system call. The syntax and semantics of ioctl in UNIX are so uncon-
trolled that we left it out. Writing to the ctl file takes the place of ioctl. Writing to the control file is
the same as writing to a data file except that the blocks created are of type control. A processing module
parses each control block put to it. The commands in the control blocks are simple ASCII strings. There-
fore, there is no problem with byte ordering when one system is controlling streams in a name space imple-
mented on another processor. The time to parse the control blocks is not important since the control opera-
tion is a rare one, usually used only when starting operation on a stream.

The stream system intercepts the control blocks that control configuration of the stream. These con-
trol blocks are:

push name to add an instance of the processing module name to the top of the stream.

pop to remove the top module of the stream.

hangup to send a control message containing the string ‘‘hangup’’ up the stream from the device
end.

Other control blocks are read by each module they pass through.

Reading from the data file returns data queued at the top of the stream. The read terminates either
when the read count is reached or when the end of a delimited block is read. There is a per stream read lock
that ensures that only one process can read from the stream at a time. This ensures that the bytes read were
contiguous bytes from the stream. Reading the ctl file is described in the section on multiplexing.

3.3. Device Input

When input exists at a device, the driver’s interrupt routine wakes up a kernel process to carry the
data upstream. A kernel process is an ordinary process with no user level segments allocated to it and is
scheduled just like any other process. Message-based devices like Ethernet [Met80] may have many pro-
cesses ready to carry the next message upstream so that many messages can be processed simultaneously.

The kernel process carries the message upstream through protocol modules. Eventually, the message
is delivered to the most upstream queue. The kernel process leaves it there and wakes any user process
blocked in a read on that stream. Thus, the only difference between input and output is that the user process
must perform the copy of the data from kernel blocks to user space. This can be a benefit in our
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multiprocessors in which each processor has a separate cache. If the kernel process were to copy the data
into the user process it would most likely do it on the wrong processor and hence into the wrong cache.
This would force the user process to fault it into its own cache, increasing the load on the shared memory
bus.

3.4. Multiplexing

Most protocols need to multiplex several conversations onto a single physical device. This is added
to our scheme using pseudo-devices, one for each multiplexed conversation. This is very similar to the way
Eighth Edition handles TCP/IP. A group of pseudo-devices are coupled with a multiplexing processing
module that is pushed onto a physical device stream. The device end modules on the pseudo-devices add
the necessary header onto downstream messages and then put them to the module downstream of the multi-
plexor. The multiplexing module looks at each message moving up its stream and puts it to the correct
pseudo-device stream after stripping whatever header it used to do the demultiplexing.

The user interface to a multiplexed protocol is a directory. The directory contains a clone file and a
stream directory for each conversation. The stream directories are numbered 1 to n (see Figure 1). Open-
ing the clone file is a macro for finding a free stream directory and opening its ctl file. Reading the con-
trol file returns the ASCII number of the conversation chosen. This allows the user process to find the cor-
responding data file.

ctl data ctl

. . .clone

dk

n 2 1

data ctl data

Figure 1

3.5. Pipes

Pipes, as in Eighth Edition, are just two streams joined at the device end. The pipe system call
returns file descriptors for the data files of the two streams. The control files are inaccessible.

3.6. Helper Processes

Transport protocols need to retransmit lost data. However, to achieve true pipelining, the user pro-
cess will want to queue data at the protocol module and return. Another process has to retransmit the data
when needed since all put procedures must be called in the context of a process. For this purpose, process-
ing modules can create kernel processes to perform such actions when needed. The processes are awakened
on need by the processing module’s put procedure or whenever a timer expires.

3.7. Flow Control

In any system that queues data one needs a mechanism to keep a queue with a slow reader from
absorbing all of memory. We use a flow control mechanism similar to Streams. Each queue keeps a count
of bytes and a count of blocks queued there. Whenever either exceeds a predetermined limit, the high water
flag is set for that queue. Each caller of a processing module checks the high water flag for the next queue
before calling its put procedure. If the next queue is past its high water mark, the would-be caller goes to
sleep, leaving a pointer to itself in its queue (the rendezvous structure in Queue). When a process empties
a queue past half its high water mark it wakes up any process waiting at the previous queue.

Modules implementing transport protocols with window schemes implement flow control a little
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differently. Rather than go to sleep, they always pass data upstream. However, when the upstream queue is
full, the transport module stops sending acknowledgements back to the remote system. Hence, the remote
side will eventually stop sending. To open the window again, a helper process sleeps in the queue instead
of the device process. When the next queue empties, the helper is awakened and it does whatever is needed
to open the remote system’s transmit window.

4. Performance

A different flavor of Streams cannot be evaluated without comparing it against earlier ones. Our
results give a general idea of where the advantages and disadvantages of Plan 9 Streams lie. However, the
systems compared are in many ways incomparable. The compilers, operating systems, and Streams code
all have a considerable effect on the results.

For Plan 9 numbers we use 4 different configurations. Three are SGI Power Series machines with 1,
2, and 4 processors. We compare these against another 4 processor SGI Power Series running System V
Release 3 and against a single processor MIPS M2000 system also running SVR3. The M2000 has the
same CPU running at the same speed as the SGI machines. However, it has a considerably faster memory
system. Outside of tight loops, this has a major impact on processing speed.

The other Plan 9 system is the Gnot terminal [Pik90]. This is a system developed in our center and
now manufactured for us by AT&T. It uses a 25 MHz Motorola 68020. We compare it against a DEC
MicroVAX 3. The machines on average are about the same speed. The Gnot CPU is about 4/3 the speed
of the microVAX with a memory system that is about 2/3 the speed of the microVAX.

All tests measure both throughput and latency. The throughput is tested using the following pro-
gram:

int i;
char buf[64*1024];
int p[2];

makeconnection(p);
switch(fork()){
case 0:

close(p[1]);
while(read(p[0], buf, sizeof buf) > 0)

;
break;

default:
close(p[0]);
for(i = 0; i<ITER; i++){

if(write(p[1], buf, sizeof buf) != sizeof buf){
perror("write");
exit(1);

}
}
break;

}

The block size is chosen to be large to minimize the difference in system call speeds. The latency is tested
using:
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int p[2];
int i;
char c;

makeconnection(p);
switch(fork()){
case 0:

close(p[1]);
while(read(p[0], &c, 1) == 1)

write(p[0], &c, 1);
break;

default:
close(p[0]);
for(i = 0; i<ITER; i++){

if(write(p[1], &c, 1) != 1){
perror("write");
exit(1);

}
if(read(p[1], &c, 1) != 1){

perror("read");
exit(1);

}
}
break;

}

In both cases, we perform each operation for a large number of iterations to get an average time.

The first test (Table 1) compares Plan 9 pipes against SVR3 normal pipes, SVR3 stream pipes, a
BSD sockets implementation running under SVR3, and Tenth Edition Streams. Since only two processes
are involved in all configurations and no processing is being performed by processing modules, we are
comparing the speed of the basic plumbing in the systems.

_ _____________________________________
Table 1 - Pipes_ _____________________________________

system throughput latency
MBytes/sec ms_ _____________________________________

SGI/1 CPU
Plan 9 6.0 .29_ _____________________________________
SGI/2 CPUs
Plan 9 8.4 .21_ _____________________________________
SGI/4 CPUs
Plan 9 8.4 .28_ _____________________________________
SGI/4 CPUs
sVr3
old pipes 4.5 .51_ _____________________________________
M2000
sVr3 stream 8.0 .51_ _____________________________________
M2000
sVr3 sockets 8.0 .36_ ______________________________________ _____________________________________
68020 Gnot
Plan 9 1.79 1.67_ _____________________________________
uVAX 3
10th Edition spipe 1.04 1.69_ _____________________________________ 








































































































From Table 1 we can see that for the large machines, Plan 9 has lower latency. This was the expected
result since the straight call structure requires many fewer instructions than traditional Streams which must
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schedule each service procedure in addition to calling its put procedure. The dip of .08 ms when going
from 1 processor to 2 is the result of concurrency. The second process is starting up before the first has
returned from queuing its block.

The unexpected result is the rise from .21 ms to .28 when going from 2 processors to 4. We believe
that this is contention over the process queue. We hope to verify this assumption before this paper is pre-
sented.

The low single processor SGI throughput for Plan 9 compared to the M2000 reflects the slower mem-
ory on the SGI box. When we use multiple processors, we take advantage of the concurrency and our
throughput passes all the others.

Plan 9 on the Gnot compared to the Tenth Edition on the MicroVAX is less impressive. We still
have a definite advantage in throughput. However, given the ratio of machine speeds, we should be much
better in latency. Profiling the kernel showed that the disappointing latency time was due entirely to the
MMU. The MMU on the Gnot only retains one process state. Whenever we switch context we do a lot of
faulting to refill the MMU. The reason the throughput doesn’t suffer from this problem is that the pipelin-
ing causes a lot of data to be moved per context switch.

To compare the performance of kernel driver processors to performing puts at interrupt level, we
used our most prevalent network, Datakit [Che80]. It is both a local and wide area network spanning all of
AT&T. The MicroVAX, SGI, and M2000 each have 8 megabit/sec links to Datakit. However, due to con-
straints in the Datakit the highest throughput is 2.6 megabits. The Gnots have a slower 2 megabit link
[Pre88]. Table 2 presents performance of various systems through the Datakit. In all cases the remote sys-
tem is a Plan 9 SGI processor. Once again, Plan 9 throughput matches or exceeds the throughput of the
other systems. However, latency is worse. This is the price paid for using kernel processes to send device
data upstream rather than doing it in the interrupt routine. The degradation is especially evident in the Gnot
since it is the worst at process switching.

_ ________________________________
Table 2 - URP/Datakit_ ________________________________

system throughput latency
KBytes/sec ms_ ________________________________

SGI/2 CPUs
Plan 9 235 1.4_ ________________________________
SGI/4 CPUs
Plan 9 235 1.4_ ________________________________
M2000
sVr3 235 1.2_ _________________________________ ________________________________
68020 Gnot
Plan 9 100 5.8_ ________________________________
uVAX 3
10th Edition 85 3.2_ ________________________________ 




































































Finally, we present some Ethernet performance results. We don’t compare these against other sys-
tems since the protocol we use, Nonet, currently runs only on Plan 9. It was designed as a low weight
transport protocol. It should be noted that the throughput figures are higher than any we’ve seen published
to date for an Ethernet. This is as much a function the protocol as it is of Plan 9.
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_ ________________________________
Table 3 - Nonet/Ethernet_ ________________________________

system throughput latency
KBytes/sec ms_ ________________________________

SGI/2 CPUs
Plan 9 950 1.4_ ________________________________
SGI/4 CPUs
Plan 9 950 1.4_ ________________________________ 






































Related Work

We must mention Larry Peterson’s x-Kernel work [Pet89]. The x-Kernel is very similar to Plan 9
Streams. It is used primarily to study the decomposition of network protocols. The process structure, mul-
tiplexing, and data structures are virtually identical to Plan 9 Steams.

The greatest differences between our systems are:

1) The x-Kernel uses very light weight kernel processes. They are just a PC and a stack. Our kernel
processes carry all the baggage of user processes.

2) Rather than queue data at the user process and wait for the user process to read it, x-Kernel kernel
processes call a put procedure in the user’s address space which moves the data directly into user
memory.

3) The message in the x-Kernel is in the form of a tree of blocks. A pointer to the top of the tree is
passed through the processing modules. We use a linear structure.

Published performance of the x-Kernel is similar to ours with lower latency times. We hope to bor-
row some of the ideas of the x-Kernel to improve our own performance.

Conclusions

We have presented another variation of streams. The main advantage to Plan 9 Streams is making
use of concurrency in multiprocessors. We have a very subjective belief that the process based model is
easier to program than the coroutine based one.

The performance results show that the Plan 9 model has high throughput. However, the contexts
switches caused by the kernel processes increase latency. Further research and tuning is required to reduce
these costs.
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Appendix

/*
* operations available to a queue
*/

typedef struct Qinfo Qinfo;
struct Qinfo
{

void (*iput)(Queue*, Block*); /* input routine */
void (*oput)(Queue*, Block*); /* output routine */
void (*open)(Queue*, Stream*);
void (*close)(Queue*);
char *name;

};

/*
* We reference kernel memory via descriptors kept in host memory
*/

typedef struct Block Block;
struct Block
{

Block *next;
uchar *rptr; /* first not consumed byte */
uchar *wptr; /* first empty byte */
uchar *lim; /* 1 past the end of the buffer */
uchar *base; /* start of the buffer */
uchar flags;
uchar type;

};

/* flag bits */
#define S_DELIM 0x80 /* this block is the end of a higher level message */
#define S_CLASS 0x07

/* type values */
#define M_DATA 0
#define M_CTL 1

/*
* a list of blocks
*/

typedef struct Blist Blist;
struct Blist {

Lock;
Block *first; /* first data block */
Block *last; /* last data block */
long len; /* length of list in bytes */

};
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/*
* a queue of blocks
*/

typedef struct Queue Queue;
struct Queue {

Blist;
int nb; /* number of blocks in queue */
int flag;
Qinfo *info; /* line discipline definition */
Queue *other; /* opposite direction, same line discipline */
Queue *next; /* next queue in the stream */
void (*put)(Queue*, Block*);
Rendez r; /* flow control rendezvous point */
void *ptr; /* private info for the queue */

};
#define QHUNGUP 0x1 /* flag bit meaning the stream has been hung up */
#define QINUSE 0x2
#define QHIWAT 0x4 /* queue has gone past the high water mark */

/*
* a stream head
*/

struct Stream {
Lock; /* structure lock */
int inuse; /* use count */
int hread; /* number of reads after hangup */
int type; /* correlation with Chan */
int dev; /* ... */
int id; /* ... */
QLock rdlock; /* read lock */
QLock wrlock; /* write lock */
Queue *procq; /* write queue at process end */
Queue *devq; /* read queue at device end */

};
#define RD(q) ((q)->other < (q) ? (q->other) : q)
#define WR(q) ((q)->other > (q) ? (q->other) : q)
#define PUTNEXT(q,b) (*(q)->next->put)((q)->next, b)
#define BLEN(b) ((b)->wptr - (b)->rptr)
#define QFULL(q) ((q)->flag & QHIWAT)
#define FLOWCTL(q) { if(QFULL(q)) flowctl(q); }


